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Abstract

The methods and codes employed in the U.S. Heavy Ion Fusion program to simulate

the beams in an Integrated Research Experiments (IRE) facility and a fusion driver are

presented in overview.  A new family of models incorporating accelerating module

impedance, multi-beam, and self-magnetic effects is described, and initial WARP3d

particle simulations of beams using these models are presented.  Finally, plans for

streamlining the machine-design simulation sequence, and for simulating beam dynamics

from the source to the target in a consistent and comprehensive manner, are described.
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I. Introduction

Computer simulations have played an important role in the U.S. Heavy Ion Fusion

(HIF) program from its outset. Improved methods and codes are being employed to

simulate the beams in an Integrated Research Experiments (IRE) facility and a fusion

driver, and are presented in overview, in Section II, below. A new family of models

incorporating accelerating module impedance, multi-beam, and self-magnetic effects, and

initial WARP3d particle simulations of beams using these models, are presented in

Section III. Finally, plans for streamlining the machine-design simulation sequence, and

for simulating beam dynamics from the source to the target in a consistent and

comprehensive manner, are described in Section IV.

This paper is by no means a complete summary of recent work. A first study

assessing the requirements for beam steering in the presence of machine errors in a

“model” IRE, conducted using WARPxy, and initial 3-D simulations of the electrostatic-

focusing section of that design, conducted using WARP3d, were presented as part of the

first author’s talk at the Symposium. This work is described in [1,2]. Work is also in

progress to assess the required tolerances in accelerating and “ear” waveforms, magnet

fields, alignment, and other aspects of the machine, and to evaluate final focusing optics

designs for IRE and driver.

II. Overview of Methods and Codes

Beam simulations fall into three general classes: those that follow a representative

set of particles via a Monte-Carlo method known as particle-in-cell (PIC); those that

evolve the beam distribution function ƒ(x,v) in time (nonlinear-perturbative δƒ and semi-

Lagrangian Vlasov methods); and those that evolve moments of ƒ. In addition, a zero-

dimensional systems model based on scaling laws is used for overall design. Most

simulations for Heavy Ion Fusion (HIF) have been carried out using PIC methods, but the

other methods have merits that make them the tools of choice for some applications.

Particle-in-cell codes

The principal PIC code used for accelerator studies is WARP, which combines

features of a plasma simulation code and an accelerator code. Several geometries are

available. WARP3d employs a “warped Cartesian” 3D computational mesh (to

accommodate bends in the beam line) and a 6D phase space wherein each particle is

characterized by its (x,y,z,px,py,pz). WARPxy uses a transverse-slice (steady flow)

description with a 2D mesh and a 5D phase space wherein each particle is characterized
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by its (x,y,px,py,pz); here the independent coordinate is effectively path length along the

(possibly bent) system axis. WARPrz uses an axisymmetric description with a 2D (r,z)

mesh and a 5D phase space (r,z,pr,pθ,pz). In all geometries the mesh on which the self-

consistent field is computed is a moving window (it may remain fixed in the laboratory

frame until the beam has been fully injected, then begin tracking the beam); at present the

description is electrostatic, but a Darwin (magnetoinductive) model is planned (see the

final section). Descriptions of the “lattice” of focusing, bending and accelerating

elements are available at varying levels of detail, including a sharp-edged model, a one-

dimensional table of multipole moments vs. axial position, a 3D grid, and first-principles

treatment of internal electrostatic elements (including subgrid-scale placement of their

boundaries to avoid staircasing). WARP offers a user-programmable interactive

interpreter interface based on the freely-available Python language, and employs both

parallelization and improved algorithms to enhance run speed. The code is further

described in [3]; see also [1].

For studies of beams in the fusion chamber, three PIC codes are in use. All employ a

fully electromagnetic field description; a Darwin model would not, in general, afford

larger timesteps, since the electron plasma frequency and not the light wave transit time

across a cell sets the step size. The first of these codes, BICrz, employs a spatially

converging mesh to preserve resolution of the beam as its radius diminishes [4]. This

code has been used to study neutralized-ballistic propagation. A newer code, BPIC, offers

both r,z and 3D geometries [5]. Its transverse mesh size is variable in time, rather than

position, with a special algorithm to advect away the attendant errors. An advanced

version of this code offers overlaid fine and coarse meshes, so that, with further

development, first-principles treatments of inter-beam effects may be studied. The third

code, LSP, also offers both r,z and 3D geometries [6]. In addition, it employs an implicit

advance, and a hybrid fluid/particle electron model, so that much denser plasmas may be

studied without incurring severe timestep-size limitations. Thus, it is ideal for treating

various high-density chamber transport modes. However, LSP does not yet offer a

converging mesh, and so carefully tapered transverse zone sizes must be used. These

tools are currently being benchmarked against each other.

Codes which evolve a distribution function

The nonlinear-perturbative, or δƒ, method evolves the perturbation δƒ to the

distribution function ƒ along particle orbits. When δƒ is small (in the sense of an integral

over velocities) compared with the equilibrium ƒ0, the statistical noise is effectively
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reduced by the ratio of the two, relative to conventional PIC. This makes the method a

good choice for examining detailed mode behavior, since eigenfunctions and growth rates

are cleanly observable, and for studying the slow evolution of a beam in a storage ring.

This class of methods is less ideal for long-time simulation of a beam in an induction

linac (since the beam evolves far from its initial state), and for other situations in which

the perturbation to the distribution function becomes large or would be represented

coarsely by very few particles. The δƒ method is embodied in BEST, which is being

applied to studies of beams in both the driver and the fusion chamber [7]; BEST can also

run in a PIC mode.

It is also becoming feasible to evolve the values of ƒ on the nodes of a Cartesian

mesh in the 4D phase space (x,y,px,py); full 6D will eventually become practical. While

several algorithms exist, a promising choice is the semi-Lagrangian Vlasov method, as

embodied in the SLV code [8,9]. In this method, the calculation reaches backward in time

along a characteristic (orbit in phase space) to obtain the current value of ƒ at each node.

Thus, low-density regions of phase space are tracked with the same accuracy as high-

density regions; this is useful for halo studies. This method naturally coarse-grains the

phase space on the scale of the computational mesh. The errors it introduces are diffusive,

and differ in character from those of PIC, making comparisons useful.

Codes which follow moments of the distribution

The principal code in this category is CIRCE, which uses a Lagrangian cold fluid

model (with hundreds of discrete slices) to describe the longitudinal dynamics, along

with moment equations for the transverse centroid and envelope extent of each slice [10].

Due to the code’s speed, it is used heavily for a number of applications, including

synthesis of acceleration and compression schedules, transport lattice improvement,

assessment of tolerances for accelerating and “ears” waveforms, studies of alignment

tolerances, beam sensing, and steering, and studies of drift compression and pulse

shaping. The CIRCE model has the following limitations: there is no model for emittance

growth or phase-mixing of “mismatch,” slow variation of quantities along beam is

assumed, and there are no module impedance, self-magnetic, or inductive models. Some

of these limitations are not fundamental.

III. Module Impedance Effects on Longitudinal Dynamics

A schematic of an accelerating module is shown in Fig. 1. Note that the high energy

part of a driver consists mostly of such modules (“gaps”) ; we denote the gap length by lg
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and the insulator radius by rg. We have implemented into WARP3d a simple model for

the impedance of the module as it affects the beam. The pulse-forming line absorbs

energy from the beam as a beam-induced wave propagates up the line; the line is

represented as a resistance R in parallel with the capacitance C of the induction module.

The circuit is depicted in Fig. 2. To date we have neglected the core impedance (which is

mostly resistive, and sub-dominant) in our simulations. That impedance is associated

with the material and format of the ferromagnetic cores (tightly-wound spirals of

amorphous metallic glass tape with inter-laminar insulation); a complete model has yet to

be developed. The circuit equation is:

RC
dV

dt
+ V = Vext − IbR (1)

For a drifting beam, this becomes:

RC
dV

dt
+ V = − (Ib − Ib0 )R (2)

where Ib0 is the time-shifted initial beam current. The beam ends must be confined against

their own thermally- and space charge-induced axial expansion and, to this end, confining

“ears” are included in the imposed voltage waveforms, along with the main accelerating

and pulse-compressing components. These ear fields are assumed to be generated by

separate pulsers with small R and C. We compute Ib as an average of Ib(z) over the length

of the gap, and find that a simple backward difference suffices (a centered difference

causes difficulty when C = 0).

To begin to explore the effects of module impedance on longitudinal dynamics, we

began with simulations of a 10 GeV, 3 kA drifting beam in the limit of R = C = 0; these

parameters correspond to a scenario (such as an induction recirculator) employing a small

number of beams, and were chosen to make contact with earlier work [11]. We applied a

perturbing “bump” to the velocity distribution at mid-pulse. The results of such a

simulation are shown in Fig. 3, which depicts the line charge density versus time at a set

of “stations” down the beam line; the time t = 0 at each station coincides with the arrival

of the leading edge of the computational grid at that station. Successive curves are offset

in ordinate from each other so as to render the wave characteristics visible. Wave

reflection at the beam ends is clearly visible. In this run, and in those shown in Fig. 4, the

beam travels through 3 km, 500 lattice periods, and 1000 gaps in 24.6µs, using 75,000

time steps. Also, Aion = 130, vb = 1.2x108 m/s, lb = 10.8 m,  phase advance per lattice

period σ0 = 70° depressed by space charge to σ = 15°, beam semi-axes a0 = 3.2 cm and b0

= 1.8 cm, a square metal pipe at xw = 5 cm, half-lattice period length lhlp = 3 m, 150 steps

per period, and grid sizes ∆z = 2.34 cm, ∆x = ∆y = 6.25 mm.
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The runs shown here used a very crude (8x8) transverse mesh (for a quadrant), 512

cells in z, and 40,000 particles, and required a few hours on a workstation. Full 3-D runs

using 640,000 particles and a 32x32x512 mesh were carried out as a check; those

required 1.77 hours on 128 processors of a Cray-T3E computer. The results (for the

quantities shown here) were very similar, but differed in detail. When it is important to

quantitatively capture both transverse and longitudinal physics, such runs are required.

When a resistance of 600 Ohms is incorporated in a simulation wherein a random

velocity perturbation (a function of axial position) was applied, waves which propagate in

a backward direction on the beam are seen to be unstable. Figure 4(a) shows the

perturbation to the line charge density as it evolves from station to station; here the

nominal line charge density has been subtracted out for clarity; the intersection of each

curve with the ordinate axis denotes that observing stations’ location, rather than (as in

the previous figure) the magnitude of the perturbation; in this figure the perturbed line

charge density has been arbitrarily scaled for visibility. In Fig. 4(b), a module capacitance

C = 0.033 nF has been included in the simulation, and its stabilizing effect is evident.

Analytic theory does not predict complete stabilization for a cold beam; we conjecture

that the finite longitudinal thermal spread also contributes to the observed stability.

A driver is expected to employ a larger number of beams each with smaller current,

and simulations of that regime began with single-beam studies. Such a run is shown in

Fig. 5, which is for a Cs+ beam at 1.76 GeV perturbed at the start of the run by a velocity

“bump” at mid-pulse. Some parameters for these runs are: Ib = 50 A, lhlp = 3.91 m,

lg = 3 m, 〈a0〉 = 1.44 cm, initial beam semi-axes 1.97 cm and 1.05 cm, xw = 3.44 cm

(square pipe), Aion = 133, vb = 5×107 m/s, β = .167, lb = 15 m, Rgap = 782 Ω, Cgap = 0,

 σ0 = 75°, σ = 20°, Vthermal,z = .5 km/s, ωp = 1.12 × 107  s-1, ωβ0 = 8.37 × 106  s-1,

n = 9.55 × 1015 m-3, ∆t = 1.04 ns, steps/period = 150, ∆z = 1.53 cm, ∆x = 4.3 mm,

80,000 particles, 8x8x1024 cells/quadrant. With a resistive module impedance, damping

of the “forward” wave, and growth of the “backward” wave, is clearly evident.

IV. Multi-Beam and Self-Magnetic Effects

The shielding plates shown in Fig. 1 periodically short out the radial electric field

and so limit inter-beam space charge and transverse beam deflections. In cylindrical

(r,θ,z) coordinates, and in the limit of plates closely spaced along the axis so that on the

large (multi-beam array) scale Er = 0, Faraday’s law becomes:

∂Ez

∂r
=

∂Bθ
∂t

(3)
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The field equation is linear, and so we can superpose the solutions of two systems to

solve the problem of interest: the first with the set of N beams each having current Ib

inside a metallic outer wall at the insulator radius rg obeying potential φ = 0, and the

second having no beam but accounting for the fields induced in the cavity by the

accelerating module in response to the return current. Integrating from an arbitrary radius

to rg (where Ez = 0), we obtain:

Ez,ind (r) = − dr'
∂Bθ( r ' )

∂t
r

rg

∫ = − dr'
∂
∂t

r

rg

∫
µ0

2πr'

NIbr'2

rg
2 ≈

Nvb

4πε0c2 1 −
r2

rg
2

 

 
 

 

 
 

∂Ib

∂z

≈ − g ind
∂λ b

∂z
where gind ≡ −

Nβ2

4πε0
1 −

r2

rg
2

 

 
 

 

 
 

 . (4)

The electrostatic longitudinal field for an “incompressible” beam is approximated by:

Ez,es ≈ −ges
∂λb

∂z
where ges ≡

1

4πε0
2ln

b

a
 
 

 
 

 
  

 
   . (5)

where a is the beam radius and b an effective single-beam pipe radius; this form is not

used explicitly, since Ez,es is obtained via the usual solution of Poisson’s equation in

WARP3d. Thus the inductive field effect is strongest for the central beam(s); on average,

for a gap “residency factor” (fraction of the half-lattice period) ηgap,

Ez,ind

Ez,es
≈ −

Nβ2ηgap

2 l n b / a( )
 , (6)

where a is the beam radius and b an effective single-beam pipe radius. Thus, to compute

this inductive field in the vicinity of the central beam (where it is strongest), we carry out

a single-beam simulation and then multiply the return current by N before using it in the

circuit equation, and use the longitudinal derivative of the beam current as computed by

WARP (and smoothed over a few grid cells to minimize computational noise):

Ez,ind (central beam) ≅
Nvb

4πε0c2
∂Ib

∂z
 . (7)

The beams are isolated from each other when they are in the quadrupole magnets, so we

apply this field only to those parts of the simulated beam that are in the gap.

Figure 6 shows the contributions to the beam’s Ez field versus position at the tail of

the beam, for the central beam in an array of 50 Cs+ beams at 1.76 GeV. Other parameters

are as for the run shown in Fig. 5. Here, z = 0 is the left (tail) end of WARP3d’s

computational mesh; the jaggedness in the electrostatic field is a result of particle

statistics. In a simulation incorporating the inductive Ez model, we find that the ear fields
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must compensate for both the electrostatic and inductive beam fields if the beam ends are

to be smoothly confined; use of ears adjusted for electrostatic forces alone causes the

launching of large waves on the beam. Figure 7 shows the longitudinal phase space after

977.5 m (19.55 µs) for two simulations (with zero module impedance) of the central

beam perturbed at the start of the run by a velocity “bump” at mid-pulse, with and

without inductive forces and ear corrections. The vertical fiducials make it clear that the

wave speed is larger in the run without inductive Ez by a ratio of 1.5; theory predicts a

speed ratio of (ges/gnet)
1/2 = 1.6, where gnet = ges + gind.

For an edge beam, the inductive Ez is negligible, but the magnetic field of the array

of beams introduces a transverse “pinching” force (in addition to the electrostatic

“bulging”) which is largest for a beam at the edge of the array:

Bθ,edge ≈
µ0

2π
NIb

rgap
(8)

As for the longitudinal force, when the plates are close enough together and there are

enough beams this magnetic force will dominate over the electrostatic bulging. The

electrostatic bulging force in general will not vary from beam to beam linearly with the

radius of its centroid, but (due to the shielding) will rise sharply as the edge of the array is

neared. Thus, one might adjust the plate spacing so that the two forces cancelled for

beams at or near the edge of the array, but global cancellation may not be achievable.

V. Plans and Discussion

The process by which a machine design is developed and simulated requires at

present multiple steps, some of which involve manual input see Fig. 8(a). One goal is to

streamline this process, leading to a sequence similar to the one shown in Fig. 8(b). The

“afterburner” referred to is coding which takes as input the overall systems design

produced by the IBEAM systems code, and yields a discrete design with, e.g., an integer

number of beams and the locations and strengths of the individual quadrupole magnets.

At this writing, the integration of CIRCE physics into WARP is partially complete.

Our long-term goal is integrated source-to-target simulation of the beams in an IRE

and driver; see Fig. 9. This will require linking particle and field data from the driver

simulations, into the chamber propagation simulations, and ultimately as beam-cluster

data into the radiation-hydrodynamics calculations used for target design. In addition,

linkages to other codes (using a variety of models, as discussed in this paper) will be

implemented. These will be used for detailed simulations of sections of the machine; the



- 10 -

linkages will ensure consistent initial conditions for simulations that begin with an

evolved beam.

Considerable work is planned in the general area of multi-beam and module

impedance effects. By increasing the number of beams, it is possible to reach a regime

where gnet < 0. We plan to explore that regime in the near future. We also plan to

implement the transverse forces described in Section IV into WARP, and to study beam

deflections. One can conceive of carrying out a set of CIRCE calculations for all beams,

using emittance data from a single beam, to accurately compute deflections (the CIRCE

model would need to be extended to handle self-inductive effects, as described below)

[12]. In addition, it is possible to extend the field model in WARP3d to account for a

variety of physics effects from nearly first principles. One can combine a detailed

simulation of a single beam (in electrostatic or Darwin approximation) with field

solutions over a larger multi-beam domain (assuming the beams behave similarly),

relaxing the approximation of closely-spaced plates made in Section IV. A formalism for

carrying this out has been developed [13].

Finally, as noted above, the Darwin model may prove useful in several contexts.

That description omits electromagnetic radiation and retardation effects, but is valid for

low- to moderate-frequency behavior in an HIF driver. Straightforward time-differencing

of the Darwin equations, unstable in most other contexts [14], is expected to be stable in

many HIF beam contexts when only ions are to be included, since the stability condition

on a grid of overall length L is: ωpL/πc < 1. Other algorithmic simplifications are also

possible for beam applications; see [15] and references therein.
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Figure Captions

Fig. 1. Geometry of a “typical” accelerating module.

Fig. 2. Circuit model employed in simulation studies of module impedance effects.

Fig. 3. 3-D WARP simulation of 10 GeV, 3 kA drifting beam, perturbed at mid-pulse by

a velocity "bump." Beam travels through 3 km; 500 lattice periods; 1000 gaps in 24.6µs,

using 75,000 timesteps.   Accelerating module R = C = 0.

Fig. 4. Simulations beginning with random perturbation to longitudinal velocity: (a) with

module R = 600 Ohms and C = 0; (b) with R = 600 Ohms, C = 0.033 nF.

Fig. 5. Evolution of line-charge density for 50 A single-beam simulation (see text).

Fig. 6. Longitudinal fields at beam end for central beam of 50-beam array (see text).

Fig. 7. Longitudinal phase space after 19.5492 µs (977.5 m): (a) no inductive self-forces

or ears correction; (b) with inductive self-forces and ears correction. Vertical lines are

fiducials.

Fig. 8. Present-day (a) and envisioned (b) work flow for systems design and simulation.

Fig. 9. Schematic overview of a source-to-target simulation capability.
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Fig. 1. Geometry of a “typical” accelerating module
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Fig. 2. Circuit model employed in simulation studies of module impedance effects.



- 15 -

Line charge (10-5 C/m)

Time (ns), relative to beam arrival at station
Fig. 3. 3-D WARP simulation of 10 GeV, 3 kA drifting beam, perturbed at mid-pulse by

a velocity "bump." Beam travels through 3 km; 500 lattice periods; 1000 gaps in 24.6µs,

using 75,000 timesteps.   Accelerating module R = C = 0



- 16 -

Perturbation to line charge density

Time (ns), relative to beam arrival at station

Fig. 4. Simulations beginning with random perturbation to longitudinal velocity: (a) with

module R = 600 Ohms and C = 0; (b) with R = 600 Ohms, C = 0.033 nF.
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Fig. 5. Evolution of line-charge density for 50 A single-beam simulation (see text).
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Fig. 6. Longitudinal fields at beam end for central beam of 50-beam array (see text).
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Fig. 9. Schematic overview of a source-to-target simulation capability.


